Skip to content

GCS resource

GCSResource

GCSResource(
    uris,
    dataframes=None,
    gcs_client=None,
    capture_schema_only=False,
    columns_description=None,
)

Bases: Resource

GCS resource reference wrapper.

This resource wraps GCS uris references such as file folders that you have stored in Google Cloud Storage with optional metadata and versioning. You pass it as an argument of your Vectice Dataset wrapper before logging it to an iteration.

from vectice import GCSResource

gcs_resource = GCSResource(
    uris="gs://<bucket_name>/<file_path_inside_bucket>",
)

Vectice does not store your actual dataset. Instead, it stores your dataset's metadata, which is information about your dataset. These details are captured by resources tailored to the specific environment in use, such as: local (FileResource), Bigquery, S3, GCS...

Parameters:

Name Type Description Default
uris str | list[str]

The uris of the referenced resources. Should follow the pattern 'gs:///'

required
dataframes Optional

The dataframes allowing vectice to optionally compute more metadata about this resource such as columns stats. (Support Pandas, Spark)

None
gcs_client Optional

The google.cloud.storage.Client to optionally retrieve file size, creation date and updated date (used for auto-versioning) up to 5000 files.

None
capture_schema_only Optional

A boolean parameter indicating whether to capture only the schema or both the schema and column statistics of the dataframes.

False
columns_description Optional

A dictionary or path to a csv file to map the column's name to a specific description. Dictionary should follow the format { "column_name": "Description", ... }

None