Skip to content

Snowflake resource

SnowflakeResource

SnowflakeResource(
    paths,
    dataframes=None,
    snowflake_client=None,
    capture_schema_only=False,
    columns_description=None,
)

Bases: Resource

Snowflake tables resource reference wrapper.

This resource wraps Snowflake tables paths that you have stored in Snowflake with optional metadata and versioning. You pass it as an argument of your Vectice Dataset wrapper before logging it to an iteration.

from vectice import SnowflakeResource

connection_parameters = {
    ...
}
new_session = Session.builder.configs(connection_parameters).create()

sf_resource = SnowflakeResource(
    snowflake_client=new_session,
    paths="SNOWFLAKE_SAMPLE_DATA.TPCH_SF10.PART",
)

Vectice does not store your actual dataset. Instead, it stores your dataset's metadata, which is information about your dataset. These details are captured by resources tailored to the specific environment in use, such as: local (FileResource), Bigquery, S3, GCS...

Parameters:

Name Type Description Default
paths str | list[str]

The paths of the resources to get.

required
dataframes Optional

The dataframes allowing vectice to optionally compute more metadata about this resource such as columns stats. (Support Pandas, Spark)

None
snowflake_client Optional

The Snowflake client to retrieve table metadata.

None
capture_schema_only Optional

A boolean parameter indicating whether to capture only the schema or both the schema and column statistics of the dataframes.

False
columns_description Optional

A dictionary or path to a csv file to map the column's name to a specific description. Dictionary should follow the format { "column_name": "Description", ... }

None